

APPENDIX E: GEOTECHNICAL REPORT

Ground Investigation Report

The Harlington, Fleet

Prepared For

Report Approval

Report Author(s)	Signature	Date
Shaun Gilbrook BSc FGS Engineering Geologist, Director	H	30/08/2019
Report Approved	Signature	Date
Graham Carter BSc FGS Engineering Geologist, Director	Pr	30/08/2019
Revision – Requested by	Nature of Revision	Date

Table of Contents

1.0 IN FRODUCTION	5
2.0 SITE LAYOUT	5
3.0 PHYSICAL SETTING	5
3.1 Geology	5
4.0 FIELDWORKS	6
5.0 GROUND CONDITIONS	6
5.1 Soils	6
5.2 Groundwater	7
5.3 Visual and Olfactory Observations of Contamination	7
5.4 Existing Foundations	7
6.0 Insitu Testing	7
6.1 Standard Penetration Testing	7
7.0 LABORATORY TESTING	
7.1 Geotechnical Testing	
8.0 DISCUSSION OF GROUND CONDITIONS	9
8.1 Soil Engineering Properties	9
8.2 Shallow Foundations	
8.3 Floor Slabs	
8.4 Excavations and Groundwater	
8.5 Aggressive Chemical Environment to Concrete	

Appendices

Appendix A – Site InvestigationPlan Appendix B – Stratigraphic Logs Appendix C – Photographs Appendix D – Laboratory Test Certificates

Trading Terms

Unless specifically stated within the tender/quotation or unless identified within the introduction to this report it is confirmed that this report has been compiled wholly in accord with Impact Geotechnical Ltd's terms of engagement. This report is provided for sole use by the Client and is confidential to them. No responsibility whatsoever for the contents of the report will be accepted to anyone other than the Client.

Copyright

Copyright of this report subsists with the originator. Prior written permission must be obtained for any third party to reproduce, store in a retrieval system or transmit in any form of by any means whatsoever, all or part of this report. The copyright of written materials supplied shall remain the property of Impact Geotechnical Ltd but with a royalty-free perpetual licence, granted to the Client on payment in full of any outstanding monies.

Context

This report is written in the context of an agreed scope of work between Impact Geotechnical Ltd and the Client and should not be used in a different context. In light of additional information becoming available, improved practices and changes in legislation amendment or re-interpretation of the report in whole or part may be necessary after its original submission.

Professional Interpretation

The recommendations made and opinions expressed in the report are based on the conditions revealed by the site works together with an assessment of the data from the insitu and laboratory testing or in respect of the desktop reports. No responsibility can be accepted for conditions that have not been revealed by the research, site works and testing.

The Client is advised that the conditions observed on site by Impact Geotechnical Ltd at the time of any site survey may be subject to change. Certain indicators of the presence of hazardous substances may have been latent at the time of the most recent site reconnaissance and they may subsequently have become evident. It is not possible to assess areas which are inaccessible or where access is not granted and IGL accept no liability for risks subsequently identified therein.

The conceptual model, Risk assessment and sampling regime has been formulated in accordance with current UK guidance at time of production based upon the relevant information gained from Phase 1 and Phase 2 investigations. While the model and assessment offer opinions and interpretations of these guidelines, the comments made are for guidance only and no liability can be accepted for their accuracy. It is possible that aspects of Geo-environmental reports may need to be altered following consultation with the statutory regulatory bodies to suit planning requirements.

Intrusive Field Operations

The data collected through direct operations in the production of this report has been so obtained, unless directly otherwise stated, in accordance with current UK guidance, law or accepted industry practice, including but not limited to: BS.5930: 1990 Code of Practice for Site Investigations (Amendment 3: 2015), & BS.10175: 2011 + A1: 2013 Investigations into Potentially Contaminated Sites. Exact exploratory locations will depend upon access conditions, site use and plant capability, IGL do not accept liability for issues arising from material identified between or outside of the area of exploratory locations.

Laboratory Testing

Unless stated otherwise within the text, all geotechnical and material laboratory tests have been performed in accordance with the relevant British Standard Documents. Laboratory testing for contaminated land assessment is completed under the UKAS / MCERTS accreditation schemes, unless identified as otherwise in the report.

Human Health Risk Assessment Criteria

The Environment Agency has undertaken revision of the Soil Guideline Values (SGVs) which are partially complete. Where standards are available using the "new" approach, these have been utilised for correlative purposes. Where standards have not yet been revised, guidance following the "old" approach has been utilised. Please note that upon release of the remaining guidelines, the standards contained within this report may be subject to change. In addition, the second edition of the LQM CIEH guidance has now been released and will be utilised in favour of previously published guideline values.

Third Parties

The findings and opinions conveyed in this report are based on information obtained from a variety of sources, including that from previous Site investigations and chemical testing laboratories. IGL has assumed that such information is correct. IGL cannot and does not guarantee the authenticity or reliability of the information it has relied upon and can accept no responsibility for inaccuracies with the data supplied by other parties.

The accuracy of the historical map extracts supplied can not be guaranteed and it should be noted that different conditions may have existed between mapping sheet editions. Therefore, there can be no certainty that all areas of contamination have been identified during the Phase 1 investigation.

Definitions

Reference to the word "contamination" in this report does not relate to the statutory definition of contaminated land under 1990 Environmental Protection Act unless otherwise stated. The definition used in this report is: "Land that contains substances that, when present in sufficient quantities or concentrations, are likely to cause harm, directly or indirectly, to man, to the environment, or on occasion to other targets" (NATO CCMS, 1985).

IGL 2019

1.0 INTRODUCTION

Impact Geotechnical Ltd (IGL) were instructed by Cooper and Withycombe (the Client) (Q19.134, dated: July 2019), to carry out a Ground Investigation at The Harlington, 236 Fleet Road, Fleet, GU51 4BY (hereafter referred to as the "site").

This report relates to the potential structural alterations and/or construction of new extensions the existing building. The purpose of the investigation was to establish preliminary information for the client, in order to determine the most cost-effective approach to the proposed construction works.

The investigation incorporated the excavation of four hand excavated trial pits to expose the foundation details to various sections of the building and the construction of three window sample boreholes to a maximum depth of 5.00mbgl in order to provide stratigraphy and geotechnical parameters.

The aims of this report are to provide an outline Ground Model of the proposed development area, and to inform the detailed design of temporary and permanent works associated with the planned construction.

2.0 SITE LAYOUT

The existing site is comprised of 'The Harlington' building, which is theatre/ entertainment venue. The building is centred on an approximate national grid reference of SU 80641 54034.

The building comprises of central section which forms a concert venue, with several extensions of varying age and construction. A basement structure is located in the northeast corner. Fleet library is also attached to the southwest corner of the building.

The building is surrounded in hardstanding in all directions, with car parking facilitates located to the west and east, with Harlington Way to the north. South of the site leads to the main Fleet Road, which is the main town high street.

The site is generally flat, however a gradual slope towards the south is noted.

3.0 PHYSICAL SETTING

3.1 Geology

The Geology of Britain Viewer (BGS, 2019) indicates the site is underlain by the Camberley Sand Formation, however superficial deposits of the Surrey Hills Gravel Member are found locally.

<u>Surrey Hills Gravel Member</u> – Comprising of Sand and Gravel, with the gravel portion comprised of flint, lower greensand and sparse quartz and quartzite.

<u>Camberley Sand Formation</u> – The Camberley Sand Formation comprises a fairly uniform sequence of yellow brown, sparsely to moderately glauconitic silty fine-grained Sand and sandy Silt, with some ironstone concretions and white sandstone. Sporadic flint gravel or gravel beds occur near the base of the unit and thin beds of pale grey Clay occur intermittently throughout.

4.0 FIELDWORKS

The following intrusive works were carried out over the over two days; Friday 2nd and Monday 5th August 2019 supervised by an Engineering Geologist from IGL. The SI was undertaken in accordance with the scope of works agreed with our Client and in relation to statutory guidance including BS5930: 1999 Code of Practice for Site Investigations (Amendment 3: 2015) and BS10175: 2011+A1: 2013 Investigation of Potentially Contaminated Sites: Code of Practice.

- Prior to any excavations taking place a Cable Avoidance Tool (CAT) was used to check for the position of any underlying electrical services. In addition, starter pits were excavated to 1.00 meters below ground level (mbgl) to clear test locations prior to any further drilling commencing.
- Four hand excavated trial pits (TP1-TP4) were excavated against various building elevations to expose the structural foundation details. Once exposed, detailed hand sketches were completed, together with photographic evidence and representative soils samples taken.
- Three windowless sample boreholes (WS1-WS3) were constructed to a maximum depth of 5.45mbgl using a tracked windowless sample rig. The recovered soils from each borehole and groundwater conditions were logged, with representative samples recovered to allow subsequent testing.
- Upon completion, exploratory holes were backfilled using arising materials and the surface finish reinstated to match existing.

The site layout plan indicating the position of the test location is provided in Appendix A, with photographs taken during the investigation in Appendix C.

5.0 GROUND CONDITIONS

5.1 Soils

The following table summarises the strata conditions encountered during the intrusive works:

Stratum	Depth Range Encountered	Detail Description
Surface Cover	GL – max.0.15m	Taramacdam in WS1, TP2 and TP3 to 0.08-0.10mbgl. Within TP4/WS3 brick pavers over sharp Sand to 0.15mbgl.
		The surface cover in TP1 and WS2 was described as Made Ground composed of dark brown gravelly silty Sand to 0.45-0.50mbgl.
Made Ground	0.08-0.15 to 1.40m	Within WS1, a brownish grey very sandy Gravel was encountered below the tarmac surface to a maximum depth of 0.50mbgl.
		Within TP2 and TP3, 'Type 1' fill was recorded to a depth of 0.22m (TP2) and 0.55mbgl (TP3) Below this TP2 a thin concrete slab was encountered to 0.30mbgl, laid over a 100mm diameter plastic drainage pipe. Pea shingle surrounded the pipe, to a maximum depth of 0.70mbgl. Below this a black silty/ clayey Sand was encountered to a maximum excavated depth of 1.40mbgl.

		Within WS2, re-worked soils described as a brown mottled orangish brown, locally reddish brown slightly gravelly Sand was encountered
		between 0.50-0.90mbgl.
		Within TP4/ WS3, below the brick pavers/ sharp Sand, 'Type 1' fill was encountered to 0.33mbgl, overlying a dark brown slightly gravelly silty/ clayey Sand to a maximum depth of 1.10mbgl.
Camberley Sand Formation (CSF)	0.50-1.10m to 2.50-2.60m	Described as a medium dense brown mottled orangish brown, locally reddish brown / greenish grey, slightly gravelly silty, locally clayey fine to medium Sand. The gravel portion as described as sub-angular to sub-rounded flint.
Camberley Sand Formation (CSF)	2.50-2.60 to 5.45m	Medium dense becoming dense yellowish brown mottled orangish brown and greenish grey, glauconitic silty fine to medium Sand.

Please refer to the stratigraphic logs contained within Appendix B for a more detailed description.

5.2 Groundwater

No groundwater was encountered during the drilling of either of the exploratory boreholes.

5.3 Visual and Olfactory Observations of Contamination

With the exception of anthropogenic materials encountered within the Made Ground soils, no visual or olfactory evidence of soil or groundwater contamination was noted during the investigation works.

5.4 Existing Foundations

The construction form of the existing foundations was explored within TP1-TP4. The table below summarises the findings of these investigations.

Trial Pit Ref:	Foundation Type	Depth to top of concrete (mm)	Base depth & (Thickness) (mm)	Projection (mm)	Founding Soil
TP1 A-A'	Concrete Strip	450	1150 (700)	150	Mottled Sand (CSF)
TP2 A-A'	Basement wall	500	Proven to 1400 (900)	50	n/a
ΤΡ3 Α-Α'	Concrete Strip	460	1400 (940)	80	Mottled Sand (CSF)
TP3 B-B'	Concrete Strip	460	1400 (940)	150	Mottled Sand (CSF)
TP4 A-A' Concrete Pad		240	1140 (900)	580 (A'A) x 550	Mottled Sand (CSF)

6.0 Insitu Testing

6.1 Standard Penetration Testing

Standard Penetration testing was completed throughout the drilling of WS1-WS3 at 1.00m centres to 5.00mbgl. This form of testing is completed using a 63.5kg drop hammer weight, over a 750mm drop, measuring the blow

counts for six, 75mm increments. The first two values are recorded as seating blows, with the remaining four values, added together to provide an 'N-value'.

The graph below summarises the results of this testing, by conversion to equivalent SPT-N values.

Testing through the upper Camberley Sand Formation to 2.50-2.60mbgl, provided SPT N-values of N=14-29, which are indicative of generally medium dense soils.

Below 2.50-2.60mbgl, SPT N-values are seen to largely increase, with value of N=15-50 recorded, which are indicative of medium dense becoming dense/ very dense soils.

7.0 LABORATORY TESTING

7.1 Geotechnical Testing

7.1.1 Particle Size Distribution (PSD)

In total, three disturbed samples of the underlying soils were submitted for Particle Size Distribution (PSD) testing by wet sieve; classification testing to determine the percentage, range and grain sizes of soil types. The table below provides a summary of the testing:

Sampla Bafi	Grain Size Percentage												
Sample Ker.	Gravel (%)	Sand (%)	Silt (%)	Clay (%)									
TP1 1.20m	8	70	2	2									
TP3 1.40m	15	68	1	7									
WS3 1.50m	0	71	2	7									
WS1 2.00m	0	84	1	6									
WS3 3.00m	0	89	1	1									

Results of testing confirm that of the logging engineers' descriptions, indicating the soils to be primarily a Sand, gravelly at shallow depths, and becoming less silty/clayey with depth.

7.1.2 Sulphate and pH Analysis

Five samples between depths of 1.00-1.45m and 3.00-3.45mbgl were submitted for determination of pH and Water-Soluble Sulphate concentration.

Water soluble sulphate concentrations were found to range from 14mg/l to 73mg/l, with pH levels ranging from 5.2 to 7.2.

Full laboratory test results can be found in Appendix D.

8.0 DISCUSSION OF GROUND CONDITIONS

8.1 Soil Engineering Properties

The purpose of this investigation was to provide a summary of the foundation construction to the existing building(s) as well as the underlying soil conditions, in relation to potential structural alterations and/or construction of new extensions to the existing building as well as the possible replacement of the current structure. The information gained by this investigation will provide the client with preliminary information, in order to determine the most cost-effective approach to the proposed construction works.

Stratigraphic records indicate a variable depth of Made Ground (below an initial surface of Taramacdam or brick pavers in WS1, TP2, TP3 and TP4/WS3), ranging between maximum depths of 0.50-1.40mbgl. In general, this was described as either 'Type 1' fill material, or a re-worked dark brown or brown silty/ clayey Sand.

The initial natural soils were described as a medium dense brown mottled orangish brown, locally reddish brown / greenish grey, slightly gravelly silty, locally clayey fine to medium Sand. This material was encountered to a maximum depth of 2.50-2.60mbgl and is considered representative of the Camberley Sand Formation.

The exposed foundations to the existing building(s) were observed to be founded within this material. Traditional concrete strip foundations were observed in TP1 and TP2, sited at a depth of 1.15-1.40mbgl, with concrete pad foundations in TP4, sited a depth of 1.14mbgl. The full depth of the foundation details in TP2 could not be established; we understand that there is a basement structure within this area, and as such foundations are likely to be in the region of 3.00-4.00mbgl.

On review of the insitu strength testing completed within this material in WS1-WS3, this material is considered medium density, with SPT N-values of N=14-29 recorded.

The soils conditions at depth below 2.50-2.60mbgl were recorded as a yellow brown mottled orangish brown and greenish grey, glauconitic silty fine to medium Sand. This material was encountered to a maximum drilled depth of 5.45mbgl in all locations and is also considered representative of the Camberley Sand Formation.

Further insitu testing within this material suggests a medium dense, becoming dense/very dense consistency, with SPT N-values of N=15-50 recorded.

No groundwater was encountered within any of the exploratory holes during the investigation.

8.2 Shallow Foundations

The Made Ground soils encountered across the site would not be considered suitable as a bearing stratum; soils of this origin are frequently present in a weak and variable condition such that unacceptable settlement would be anticipated even under light loading intensities.

The soils at the existing foundation depths of 1.14-1.40mbgl are described as a medium dense brown mottled orangish brown, locally reddish brown / greenish grey, slightly gravelly silty, locally clayey fine to medium Sand. On the basis of insitu testing completed within this material a safe bearing capacity of 125-150kN/m² is considered achievable at this depth.

For new foundations, we would suggest that foundation depths should match that of existing foundations (1.20m>). The upper portion of the Camberley Sand Formation was noted to be locally clayey and as such excavations should be checked during the construction phase for any variability in soil conditions. If encountered, any soft spots encountered should be removed and replaced with suitable fill material foundation extended to a greater depth, or bridged, where possible.

8.3 Floor Slabs

The floor slab design will depend on the final foundation designs and is dependent on the underlying materials, including bearing capacity and the presence of any cohesive or Made Ground Soils.

Where Made Ground thicknesses extend beyond 600mm, it is recommended that a suspended floor is utilised for any new structure, unless a subbase can be designed, and constructed to a suitable degree of compaction, beneath the new floor slab. This should be designed by a structural engineer; the completion of integrity testing of the subbase should be considered, prior to forming the new concrete slab.

8.4 Excavations and Groundwater

It is likely that excavations of less than 1.20mbgl will require support to their faces due to the variable/ granular nature of the Made Ground. Should excavations be taken below this, adequate support should be provided in order to satisfy statutory safety regulations.

Groundwater was not encountered during the investigation, however groundwater levels are dependent upon seasonal variations and levels may change after periods of heavy rain of prolonged drought.

If groundwater is identified within any of the excavations during the construction phase, then it should be dealt with appropriately and removed using good engineering practices.

The design of any temporary retaining structures to support excavation faces should be made assuming the following moderately conservative parameters:

Material	Effective angle of friction (Ø')	Effective Cohesion; c' (kPa)	Bulk Density kN/m ³
Made Ground	28-30	0	17-18
Camberley Sand Formation	30-32	0	18-19

8.5 Aggressive Chemical Environment to Concrete

Sulphate concentrations were found to range from 14mg/l to 73mg/l, with pH levels ranging from 5.2 to 7.2, suggesting that a design class of DS-1 and a sub class of AC-3z should be adopted for buried concrete structures within these soils, (Reference made to current BRE SD1 Guidelines) based on the soils tested.

APPENDICES

Appendix A – Site Investigation Plan Appendix B – Stratigraphic Logs Appendix C – Photographs Appendix D – Laboratory Certificates

Site Investigation Plan

Notes:

- Do not scale from this drawing.
 All dimensions must be checked
- on site prior to commencement of work.
- Where applicable this drawing is to be read in conjunction with other consultants drawings.
- This drawing is the copyright of Impact Geotechnical Ltd.

Drawing Title:

Site Investigation Plan

Project Reference:

P19.114

The Harlington, Fleet

Revision: 0 Drawn by: SG Scale: Not to Scale

Site Name:

N A

Stratigraphic Logs

						Bore	ehole	e Log	Borehole No. WS1 Sheet 1 of 1				
Projec	t Name:	The Harling	ton, Fle	et	Proje	ect No		Co-ords	Hole Type				
<u> </u>	-				P19	.114		n/a	WLS Scale				
Locatio	on:	Fleet, Hamp	oshire					n/a	NTS				
Client:		Cooper & W	Vithvcor	mbe				Date(s)	Logged By				
	Comple		-+!	г			02	2/08/2019	SG				
Well	Sample Water Strik <u>es</u>	Depth(s)	Type	Results	Depth (m)	Levei (m AOD)	Legend	Strati	um Description				
		0.60 1.00 1.00 1.00-1.45 1.50 2.00 2.00 2.00 2.00-2.45 2.50 3.00 5.00 5.	D SPT D D SPT D D SPT D D SPT D D SPT D	N=17 (2,2/4,4,4,5) N=20 (2,4/4,5,5,6) N=18 (2,4/4,4,5,5) N=34 (2,4/7,7,10,10) N=50 (5,7/9,12,14,17)	0.10 0.50 2.50			(MADE GROUND) Tarm (MADE GROUND) Brow coarse, sub-angular to medium to coarse, Gra 150mm cemented. Medium dense brown, locally grey slightly gravelly sil medium SAND. Gravel angular to sub-rounder FORMATION) Medium dense becc brown mottled oran greenish grey glauco medium SAND. (CAI FORMATION)	nacadam vnish grey very sandy fine to sub-rounded Gravel Sand is ivel is concrete. Top 100- mottled orangish brown / reddish brown/ greenish lty, locally clayey fine to is fine to coarse, sub- d flint. (CAMBERLEY SAND oming dense, yellowish ngish brown and onitic, silty fine to MBERLEY SAND				
Poma	den									6			

Hand excavated pit to 1.00mbgl. No groundwater encountered. SPT's completed at 1.00m centres. End of windowless sample at 5.45mbgl. Backfilled with arisings on completion.

Project Name: The Harlington, Fleet Project No P19.114 Co-ords n/a Hole Type WLS Location: Fleet, Hampshire Level Scale NTS Client: Cooper & Withycombe Date(s) 05/08/2019 Logged By 05/08/2019 SG Well Sample and Insitu Testing Wetrix Depth(s) Type Results Depth (m) Level MOD Legend AOD Stratum Description 0.80 D 0.50 0.50 Osrower dark brown graveliv strikes Oncore the brown graveliv osrower dark brown graveliv stratum Description Image: Concrete Construct and concrete. MADE GROUND) Grass over dark brown graveliv ub-angular to sub-counded flint, brick and concrete. 0.80 D 0.50 0.50 Osrower dark brown graveliv stratum Description Image: Concrete.							Bore	ehole	e Log	Borehole No. WS2 Sheet 1 of 1	
P19.114 n/a WEX Location: Fleet, Hampshire Level Scale n/a NTS Client: Cooper & Withycombe Date(s) Logged By Sample and Insitu Testing Results Depth Level Well Sample and Insitu Testing Results Depth Level Strikes Depth(s) Type Results Depth Level 0.50 0.50 0.50 Stratum Description AOD) 0.80 D 0.50 0.50 Stratum Description 1.00 D D 0.50 Stratum Description 1.00 D D N=29 (2,4/5,6,9,9) 0.90 Stratum Description 1.00 D D N=29 (2,4/5,6,9,9) 0.90 Stratum Description 1.00 D D N=19 (2,3/5,4,5,5) Stratum Description Medium dense brown noticed find. (Reverted) 2.00 D D D N=19 (2,3/5,4,5,5) Zefo Medium dense brown motiled orangish brown and pale brown locally redish brown and p	Project	t Name:	The Harling	ton, Fle	et	Proje	ect No		Co-ords	Hole Type	
Location: Fleet, Hampshire n/a NTS Client: Cooper & Withycombe Date(s) 05/08/2019 Logged By 05/08/2019 Well Sample and Instu Testing Water Pepth(s) Type Results Depth (m) Level (m) Legend AOD Stratum Description Well 0.80 D 0.80 D 0.50 Stratum Description Stratum Description 0.80 D 0.80 D 0.50 Stratum Description Stratum Description 1.00 D D N=29 (2,4/5,6,9,9) 0.90 Stratum Description Stratum Description 1.00 D D N=29 (2,4/5,6,9,9) 0.90 Stratum Description Stratum Description 1.00 D D N=29 (2,4/5,6,9,9) 0.90 Stratum Description Stratum Description 1.00 SPT N=19 (2,3/5,4,5,5) 0.90 Stratum Description Stratum Description 2.00 2.00 D N=19 (2,3/5,4,5,5) 2.60 Stratum Description Stratum Description 3.00 3.00 D N=19 (2,3/3,3,4,5) 2.60 Stratum Description Stratum Description 3.00 SOD D N=19 (2,3/3,3,4,5) 2.60 Stratum Description Str						P19	.114		n/a Level	WLS Scale	—
Date(s) 05/08/2019 Logged By SG Sample and Insitu Testing Well Depth(s) Type Depth (m) Level (m) Legend Stratum Description Well Strikes Depth(s) Type Results Depth (m) Level (m) Legend Stratum Description 0.80 D 0.50 0.50 0.50 0.50 (MADE GROUND) Grass over dark brown gravelly sith fine to cease, sub-angular to sub-rounded film, brick and concrete. Stratum Description 1.00 D D 0.50 0.50 0.50 Stratum Description 1.00 D D N=29 (2,4/5,6,9,9) 0.90 Stratum Description Stratum Description 1.00 D D N=29 (2,4/5,6,9,9) 0.90 Stratum Description Stratum Description 2.00 D D N=29 (2,4/5,6,9,9) 0.90 Stratum Description Stratum Description 2.00 SFT N=29 (2,4/5,6,9,9) 0.90 Stratum Description Stratum Description Stratum Description 2.00 SPT N=19 (2,3/5,4,5,5) D Stratum Description Stratum Description 2.00 SPT D N=19 (2,3/5,4,5,5) Z.60 Stratum Description	ocatio	on:	Fleet, Hamp	shire					n/a	NTS	
Well Sample and Insitu Testing Water Strikes Depth(s) Type Results Depth (m) Level (m) Level (m) Legend Stratum Description 0.80 D 0.80 D 0.50 0.50 IMADE GROUND) Grass over dark brown gravelly sitly fine to medium Sand. Gravel is fine to coarse, sub-ngular to sub-rounded fint, brick and concrete. Occasional cobbies of concrete. 0.80 D 0.50 0.50 0.50 Income the medium Sand. Gravel is fine to coarse, sub-ngular to sub-rounded fint, brick and concrete. Occasional cobbies of concrete. 1.00 D D N=29 (2,4/5,6,9,9) 0.90 Income the medium Sand. Gravel is fine to coarse, sub-angular to sub-rounded fint. (Re- worket) 2.00 D D N=19 (2,3/5,4,5,5) N=19 (2,3/5,4,5,5) N=19 (2,3/5,4,5,5) 2.00 Z-50 D N=19 (2,3/5,4,5,5) Z-60 Medium dense becoming dense, yellowish brown mottled orangish brown and greenish grey glauconitic, silty fine to medium SAND. (CAMBERLEY SAND FORMATION) 3.00 D N=15 (2,3/3,3,4,5) Z-60 Medium dense becoming dense, yellowish brown mottled orangish brown and greenish grey glauconitic, silty fine to medium SAND. (CAMBERLEY SAND FORMATION)	Client:		Cooper & W	/ithycor	mbe			05	Date(s)	Logged By SG	
Well Water Strikes Depth(s) Type Results Depth (m) (m) Legend AOD) Stratum Description Well Strikes Depth(s) Type Results (m) (m) Legend Stratum Description 0.80 D		Sample	e and Insitu Te	sting	[Danth	Level	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
0.80 D 1.00 D 1.00 D 1.00 D 1.00 D 1.00 SPT 1.00 SPT 1.00 D 1.00 SPT 2.00 SPT 3.00 D 3.00 SPT 3.00 SPT 3.00 SPT 3.00 SPT 3.00 SPT	Well	Water Strikes	Depth(s)	Туре	Results	(m)	(m AOD)	Legend	Strati	um Description	
4.00 D 4.00 SPT 4.00 SPT 4.00 D 4.00 D 4.50 D 5.00 D 5.00 SPT 5.00 SPT 5.00 SPT 5.00 SPT 5.00 SPT S.00 SPT			$\begin{array}{c} 0.80\\ 1.00\\ 1.00\\ 1.00 \end{array}$	D D SPT D D SPT D D SPT D D SPT D D SPT D	N=29 (2,4/5,6,9,9) N=19 (2,3/5,4,5,5) N=15 (2,3/3,3,4,5) N=29 (2,3/5,7,7,10) N=40 (4,7/8,9,11,12)	0.50 0.90 2.60			(MADE GROUND) Gras silty fine to medium Sa sub-angular to sub-rou concrete. Occasional co Brown mottled orange slightly gravelly fine to to coarse, sub-angular worked) Medium dense brown and pale brown, local greenish grey slightly clayey fine to medium coarse, sub-angular to (CAMBERLEY SAND Fo brown mottled orang grey glauconitic, silty (CAMBERLEY SAND Fo brown mottled orang grey glauconitic, silty (CAMBERLEY SAND Fo	s over dark brown gravelly ind. Gravel is fine to coarse, inded flint, brick and obbles of concrete. brown, localy reddish brwn medium Sand. Gravel is fine to sub-rounded flint. (Re- n mottled orangish brown lly reddish brown/ gravelly silty, locally n SAND. Gravel is fine to o sub-rounded flint. ORMATION) ming dense, yellowish fine to medium SAND. ORMATION) ehole at 5.45mbgl	

Hand excavated pit to 1.00mbgl. No groundwater encountered. SPT's completed at 1.00m centres. End of windowless sample at 5.45mbgl. Backfilled with arisings on completion.

Project Name: The Harlington, Fleet Project No P19.114 Co-ords n/a Hole Type Wils Location: Fleet, Hampshire Level Scale n/a NTS Client: Cooper & Withycombe Date(s) Logged By 05/08/2019 SG Well Sample and Insitu Testing Water Depth(s) Type Results Depth (m) Level (mADE GROUND) Philos brown sandy fine to coarse, sub-angular to sub-rounded Gravel of Limetoria (rover 1) Fill 1.00 D 1.20 SPT D N=14 (2,4/4,3,3,4) 1.10 Medium dense brown, locally reddish brown and pale brown, locally reddish brown greenish grey slighty gravelly sity, locally clayer fine to medium SAND. Gravel is fine to coarse, sub-angular to sub-rounded fine t				÷			Bore	ehole	e Log	Borehole No. WS3 Sheet 1 of 1				
Location: Fleet, Hampshire P19.114 n/a WLS Location: Fleet, Hampshire Level Scale n/a NTS Client: Cooper & Withycombe Date(s) Logged By Well Sample and Insitu Testing Results Depth (m) Level (m) Stratum Description Well Water Depth(s) Type Results Depth 0.15 Legend AOD Stratum Description 0.15 Image: Cooper & Withycombe 0.15 0.33 Image: Cooper & Withycombe MADE GROUND) Parkish brown sandy fine to coarse, sub-angular to sub-rounded Gravel of image: Sub-angular to sub-rounded finit and brick. 1.00 D SPT N=14 (2,4/4,3,3,4) 1.10 Medium dense brown, nocally reddish brown and pale brown, locally reddish brown/ greenish grey slightly gravelly slivy, locally clayer fine to medium SAD. Gravel is fine to coarse, sub-angular to sub-rounded flint. (CAMEERLEY SAND FORMATION) Medium dense brown mottled orangish brown and pale brown, locally reddish brown/ greenish grey slightly gravelly slivy, locally clayer fine to medium SAD. Gravel is fine to coarse, sub-angular to sub-rounded flint. (CAMEERLEY SAND FORMATION)	Proje	ct Name:	The Harling	ton, Fle	et	Proje	ect No		Co-ords	Hole Type				
Location: Fleet, Hampshire Detect n/a NTS Client: Cooper & Withycombe Date(s) Logged By Well Sample and Insitu Testing Depth (m) Level (m) Legend Stratum Description Well Water Depth(s) Type Results Depth (m) Level (m) Legend Stratum Description Well Strikes Depth(s) Type N=14 (2,4/4,3,3,4) 0.15 Kinke GRO UND) Dark brown alightly gravelly silty/clayey fine to medium Sand. Gravel is fine to coarse, sub-angular to sub-rounded finat and brick. Imach Location D D N=14 (2,4/4,3,3,4) 1.10 Medium dense brown mottled orangish brown and pale brown, locally readish brown and pale brown, locally readish brown and pale brown, locally readish brown/ greenish gree slightly gravelly silty, locally clayey fine to sub-rounded fint. (CAMBERLEY SAND FORMATION) 2.00 D N=20 (2,3/3,5,6,6) 2.50 D						P19	.114	 	n/a	WLS Scale				
Depth (s) Logged By 05/08/2019 Well Sample and Insitu Testing Water Depth(s) Type Results Depth (m) Level (m Level (m Level (m Stratum Description Well Water Depth(s) Type Results 0.15 Birick payers ave sharpe sand. 0.33 0.15 0.33 0.33 0.15 MADE GROUND) Pinkish brown sand; fine to coarse, angular to sub-rounded Gravel of limestane (TYPE 1) Fill With/clayer fine to be-ounded Gravel of limestane (TYPE 1) Fill With/clayer fine to medium Sand. Gravel Is fine to coarse, sub-angular to sub-rounded fint and birk. 1.00 D N=14 (2,4/4,3,3,4) 1.10 Medium dense brown mottled orangish brown and pale brown, locally reddish brown/ greenish grey slightly gravelly slity, locally clayer fine to medium SAND. Gravel Is fine to coarse, sub-angular to sub-rounded fint. (CAMBERLEY SAND FORMATION) 2.00 D N=20 (2,3/3,5,6,6) 2.50 East	Locati	ion:	Fleet, Hamp	pshire					n/a	NTS				
Cooper & Withycombe O5/08/2019 SG Sample and Insitu Testing Level (m Level (m Level (m Stratum Description Well Water Depth(s) Type Results Depth (m) Level (m Legend Stratum Description Well Strikes Depth(s) Type Results 0.15 Level (m Legend Stratum Description Well Image: Colspan="4">Image: Colspan="4">Stratum Description Well Image: Colspan="4">Image: Colspan="4">Stratum Description Well Image: Colspan="4">Image: Colspan="4">Stratum Description Image: Colspan="4">Image: Colspan= 400000 Stratum Description	Cliont		Canar 8. V						Date(s)	Logged By				
Sample and Insitu Testing Results Depth (m) Level (m) Legend Stratum Description Well Water Strikes Depth(s) Type Results 0.15 Birick pavers ove sharpe sand. (MADE GROUND) Pinkish brown sandy fine to coarse, angular to sub-rounded Gravel of Limestane (Type 1) Eill (MADE GROUND) Pinkish brown sandy fine to coarse, angular to sub-rounded Gravel of Limestane (Type 1) Eill (MADE GROUND) Pinkish brown sandy fine to coarse, angular to sub-rounded Gravel of Limestane (Type 1) Eill 1.00 D N=14 (2,4/4,3,3,4) 1.10 Medium dense brown mottled orangish brown and pale brown, locally reddish brown/ greenish grey slightly gravelly silty, locally clayey fine to medium SAND. Gravel is fine to coarse, sub-angular to sub-rounded flint. 2.00 D N=20 (2,3/3,5,6,6) N=20 (2,3/3,5,6,6) N=20 (2,3/3,5,6,6) 2.50 D N=20 (2,3/3,5,6,6) 2.50 N=20 (2,3/3,5,6,6) N=40		.: 	Cooper & v	Vitriycon	nbe			05	5/08/2019	SG				
Weil Water Strikes Depth(s) Type Incluits (m) AOD) Cegenal Structure procession Strikes Depth(s) Type (m) (m) AOD) AOD) Structure procession View Incluits (m) (m) AOD) Structure procession Structure procession View (mADE GROUND) Pinkish brown sandy fine to coarse, angular to sub-rounded Gravel of limestone (TYPE 11) Fill (mADE GROUND) Dark brown slightly gravelly slitty/clayey fine to medium Sand. Gravel is fine to coarse, sub-angular to sub-rounded flint and brick. 1.00 D SPT N=14 (2,4/4,3,3,4) 1.10 1.20-1.65 D D Medium dense brown mottled orangish brown and pale brown, locally redish brown/ greenish grey slightly gravelly slight, locally clayey fine to medium SAND. Gravel is fine to coarse, sub-angular to sub-rounded flint. (CAMBERLEY SAND FORMATION) 2.00 2.00 SPT N=20 (2,3/3,5,6,6) Image: sliphtly gravelly SAND FORMATION)	م/۸/	Sample	e and Insitu Te	sting	Results	Depth	Level (m	Legend	Strat	um Description				
1.00 D 1.00 D 1.20 SPT 1.20 SPT 1.20 SPT 1.20-1.65 D 0 N=14 (2,4/4,3,3,4) 1.10 Medium dense brown mottled orangish brown/ greenish grey slightly gravelly silty, locally clayey fine to medium SAND. Gravel is fine to coarse, sub-angular to sub-rounded flint and brick. 2.00 D 2.50 D	VVCII	Strikes	Depth(s)	Туре	hesuits	(m)	AOD)	Legena	50.00					
3.00 3.03,345 D D N=31 (4,5/7,7,8,9) Medium dense becoming dense, yellowish brown mottled orangish brown and greenish grey glaconitic, sith (net or mottled orangish brown and greenish grey glaconitic, sith (net or mottled orangish brown and greenish grey glaconitic, sith (net orangish brown grey glaconitic, sith) grey glaconitic, sith (net orangish brown grey gla			$ \begin{array}{c} 1.00\\ 1.20\\ 1.20-1.65\\\\ 2.00\\ 2.00\\ 2.00-2.45\\\\ 2.50\\\\ 3.00\\ 3.0$	D SPT D D SPT D D SPT D D SPT D D SPT D	N=14 (2,4/4,3,3,4) N=20 (2,3/3,5,6,6) N=31 (4,5/7,7,8,9) N=38 (3,5/7,9,10,12) N=40 (4,5/9,9,11,11)	0.15 0.33 1.10 2.50 5.45			Birick pavers ove sha (MADE GROUND) Pink coarse, angular to sub- Limestone. ('TYPE 1') F (MADE GRO UND) Da silty/clayey fine to m to coarse, sub-angular brick. Medium dense brow and pale brown, loca greenish grey slightly clayey fine to mediur coarse, sub-angular t (CAMBERLEY SAND F Medium dense becor brown mottled orang grey glauconitic, silty (CAMBERLEY SAND F End of bor	rpe sand. ish brown sandy fine to rounded Gravel of ill irk brown slightly gravelly edium Sand. Gravel is fine ir to sub-rounded flint and n mottled orangish brown lly reddish brown/ gravelly silty, locally n SAND. Gravel is fine to o sub-rounded flint. ORMATION) ming dense, yellowish gish brown and greenish fine to medium SAND. ORMATION) ehole at 5.45mbgl				

Hand excavated pit to 1.20mbgl. No groundwater encountered. SPT's completed at 1.00m centres. End of windowless sample at 5.45mbgl. Backfilled with arisings on completion.

Remarks

Hand excavated pit to 1.20mbgl to expose existing foundation construction. No groundwater encountered. Backfilled with arisings and previous sufrace conditions reinstated.

Remarks

Hand excavated pit to 1.45mbgl to expose existing foundation construction. No groundwater encountered. Backfilled with arisings and previous sufrace conditions reinstated.

Remarks

Hand excavated pit to 1.45mbgl to expose existing foundation construction. No groundwater encountered. Backfilled with arisings and previous sufrace conditions reinstated.

Hand excavated pit to 1.40mbgl to expose existing foundation construction. No groundwater encountered. Backfilled with arisings and previous sufrace conditions reinstated. WS3 completed through base of trial pit to 5.45mbgl - see WS3 log for full details.

WS1 3.00-4.00mbgl

9. 10. 12. 11. **Investigation Photographs** 9. TP1 10. TP2 **IMPACT** GEOTECHNICAL TP2 Project Ref: P19.114 11. 12. WS2 Site Name: The Harlington, Fleet

16.

20. TP3

28. WS3 1.20-2.00mbgl

WS3 4.00-5.00mbgl 32. TP1 and WS1 reinstatement

Laboratory Certificates

	K	3)		PARTIC	LE SIZE	ION		Job Ref	/Dit No	26971								
	ita Na		/	The Herlington	Floot							Borenoie			IP	1			
0						Oliant						Sample I	NO.		-				
Pr	ojecti	NO.		P19-11	ŧ	Client			Impa	ci Geol	ecnnical		р		1.20		m		
				Orangiah brow	o lightly m	ottlad raddi	b brow		bluic	h grov	grovellyvery	Depth Bas	se		-		m		
	Soil [Descripti	ion	clayey S	SAND (grav	vel is fmc an	d sub-	angula	ir to s	sin grey sub-rour	nded)	Sample	Гуре		D	2040			
												Schedule	es received		05/08/2	2019			
	Tes	t Metho	d	BS1377:Part 2:	1990, clau	se 9.0						Projec	t started						
	_											Date	tested		21/08/2019				
		CLAY	Fine	SILT Medium	Coarse	Fine	S	AND		Coarse	Fine	GRAVEL Medium	Coarse	COBBLES	BOL	ILDERS	;		
	100	1																	
	90	-																	
	80																		
	00																		
%	70	1																	
sing	60																		
Pas	50	ļ																	
itage	40																		
ercen	40																		
Pe	30																		
	20	0														_			
	10	10																	
	10																		
	0 0.	001		0.01		0.1	![!	Pa	ticle	1 Size		10		100			1000		
			Sie	ving	1	Sedime	entatio	n	lioic										
	Pa	irticle Si	ze mm	% Passing	Particl	e Size mm	%	Passi	ng										
		125	,	100							Sample Pro	portions			% dry	mass]	
		90 75		100							Very coarse				0.0)			
		63		100						-	Sand				70.	, 5			
		50 27.5	-	100								2mm			21	5			
		28)	100						-		511111			21.	5		J	
		20		96	_					1	Grading An	alysis							
	\vdash	14		95 94	_					-	D60		mm		0.18	34			
		6.3		93]	D30		mm		0.08	95			
	\vdash	5 3.35	5	93	_					-	Uniformity C	oefficient	mm						
		2)	92						1	Curvature C	oefficient						1	
	-	1.18	3	91 91						_	Remarks								
		0.42	5	90							Preparation and	testing in accord	lance with BS137	7 unless not	ed below				
	_	0.3	2	87 72															
		0.15	5	43															
		0.06	3	22										0.			va d		
5	Q					K4 Soil	s Lab	orat	ory					Check	ed and A	Approv	vea		
Unit 8, Olds Close, Watford, Herts, WD18 9RU Initials: J.P												J.P							
	AS				En	nail: jamo Tel: 01	es@k 923 7	4soi 7112	IS.CO 38	om			Date:	Date: 22/08/2019					
25	519	Арр	roved S	ignatories: K.Ph	aure (Tech	.Mgr) J.Pha	ure (La	b.Mgr)					MSF-5-R3					

	K	H SOILS		SIZ	IZE DISTRIBUTION Job Ref Borehole										ef					26971					$\overline{\neg}$							
	Site Na	ume.	/	The H	larlington	Floot														50	mnle		INO.						- 5			-
		No			P10-11	1 1001			Clia	nt			In	Inac	nt Ga	oter	hnic	- l		De	nth T	00					1	140			n	
	lojeoti	10.			1 10-11	-			Olic					ipac		010				Den	th Ba	se Se			-			-			n	
	0.11			Ora	ngish bro	wn slig	htly m	nottle	ed gr	ey g	rave	lly cl	aye	y SA	AND	(gra	avel i	s fm	с	Sa	mple	Type	e.		-				<u>ר</u>			
	Soll L	Jescripti	ion		0	0	and s	ub-a	angul	lar to	sub	-rou	nde	d)						Sa	ample	s ree	ceive	ed	+		C	5/08	/201	9		-
																				Sc	hedule	es re	eceiv	/ed			C	8/08	/201	9		
	les	t Metho	d	BS13	/7:Part 2:	1990,	claus	e 9.(0												Projec Date	et sta e tes	arted ted	1	+		2	8/08 1/08	/08/2019 /08/2019			-
	-				SILT						S	AND)							GRA	VEL							DC				
	100	CLAY	Fine		Medium	Coa	arse		Fine		M	ediur	n	C	Coarse	è		Fine		Medi	ium	С	oars	e	00	BBLES		BC	OLDE	RS		
	100																						_/	1								
	90															_	_														T	
	80	1									/																				†	
%	70										(_											+	+			+	
sing	60									-/						_												_			-	
e Pas	50															_												_				
entage	40									1																						
Perce	30																															
-	30								\square																							
	20	1						1								_																
	10	10													_											+	+			ł		
	0	001			0.01				01						1					10					1(1		
	0.	001			0.01				0.1			F	Parti	cle \$	Size	m	m			10										1	000	
			Sie	ving				S	Sedir	nen	tatio	n																				
	Pa	rticle Si	ze mm	%	Passing	P	article	e Siz	e mr	n	%	Pas	ssinę	9		_																
		125 90			100												Sam Verv	ple	Pro rse	portio	ns				_		%	dry 0	/ mas	SS		
		75			100												Grav	/el										14	1.4			
		63 50			100					-						ŀ	San	d							+			68	3.2			_
		37.5	5		92											ľ	Fine	s <0	.063	3mm								17	7.3			
		28			92 91					\pm						ſ	Gra	ding	An	alysis					T							
		14 10			91 90	$-\square$				+					-	ļ	D10	0						mm mm	-			0.1	77			\neg
		6.3			88											ŀ	D30							mm				0.0	876			
	-	5 3.35	5		88 87					_					-	ŀ	D10 Unife	ormit	ty C	oefficie	ent			mm	+							\neg
		2			86										1	ľ	Curv	/atur	e Co	oefficie	ent											
		1.18	3		84 83												Rem	narks	5													
		0.42	5		82												Prepa	ration	and	testing ir	n accore	dance	e with	BS13	77 ur	nless no	oted b	elow				
	\vdash	0.3	2		79	$-\parallel$																										
		0.15	3		51 17																											
	*	0.00	~		17	II																				04-		<u></u>	۰		d	
- Ç	ЗQ Д							K4	l So	oils	Lab	oora	ato	ry												Unec	ĸed	and	нрр	OVE	a	
Unit 8, Olds Close, Watford, Herts, WD18 9RU												I	Initia	als:					J.	Ρ												
	KAS						C 10	T	. jai el: (019	23 7	711	288	3	/11								I	Date	:			2	22/08	/201	9	
2	519	Арр	roved S	ignato	ries: K.Ph	aure (1	Tech.	Mgr)	J.Pł	naure	e (La	ıb.M	gr)											MSF-5-R3								

	K	1		Р	ARTIC	LE SIZE	DIS	TRI	BUT	ION			Job Ref	-		269	71		
		SOILS											Borehol	e/Pit No.		WS	1		
S	ite Na	me		The Harlington, F	leet			1					Sample	No.	_	-			
Pr	oject N	No.		P19-114		Client			Impa	ct Geot	echnical		Depth T	ор		2.00		m	
											Depth Base			ase		-		m	
	Soil D	escriptio	on	Orang	ish brown	slightly mot	tled g	rey silf	ty clay	ey SAI	ND		Sample	Туре		D			
													Sample	es received		05/08/2019			
	Test	Method	1	BS1377:Part 2: 1	90, clause 9.0 Pro						Proje	ct started		08/08/2019					
													Dat	e tested		21/08/2	2019		
	_	CLAY	Fine	SILT	Coorco	Fino	S	AND		Coorco	Fino		GRAVEL	Coorno	COBBLES	BOU	LDERS		
	100 -		FINE		Coarse							; ;							
	90 -																		
	80 -																		
%	70 -						1												
sing	60 -						_												
Pase	50 -																		
itage	40																		
ercer	40 -																		
ď	30 -																		
	20 -																		
	10 -																		
	0																		
	0.0	001		0.01		0.1		Pa	rticle	1 Size	mm		10		100			1000	
			Sie	ving		Sedime	ntatio	n											
	Par	rticle Siz	e mm	% Passing	Particle	e Size mm	%	Pass	ing										
		125		100							Sample	Pro	portions			% dry	mass		
		90 75		100 100	_					-	Very coa Gravel	arse				0.0)		
		63		100							Sand					83.	9		
		50 37.5		100 100	_					-	Fines <(0.063	3mm		-	16.	1		
		28		100									-			-			
		20 14		100 100	_					-	Grading D100	g An	alysis	mm	-				
		10		100							D60			mm		0.19	95		
	-	6.3 5		100 100						_	D30 D10			mm mm		0.12	29		
		3.35		100							Uniform	ity C	oefficient						
		2		100						-	Curvatu	re C	oefficient						
		0.6		100						1	Remark	S							
		0.425	5	99 96	_					-	Preparatio	n and	testing in acco	rdance with BS13	77 unless not	ed below			
		0.212	2	69															
		0.15 0.063	8	33 16															
G	þ					K4 Soils	s Lat	oorat	orv						Check	ed and A	Approv	red	
- ()	4)			Unit	8, Olds	Close, V	Vatfo	rd, H	lerts	, WD	18 9RU			Initia	Initials: J.P			I.P	
	Email: james@k4soils.com							Date	Date: 22/08/2019)19							
25	19	Appr	oved S	ignatories: K.Phau	ire (Tech.l	Mgr) J.Phau	ire (La	ab.Mgr	.)							MSF-5-F	२३		

	K	1)	Р	ARTIC	LE SIZE	DIS	TRIB	UT	ION			Job	Ref				26	971	0.10	
		soils											Bor	ehole	/Pit No.	-		W	'S3		
S	ite Na	me		The Harlington, F	leet								Sar	nple I	No.	_			-		
Pr	oject N	No.		P19-114		Client		l	mpac	t Geot	echnical		Dej	oth To	р			1.50			m
													Dep	th Bas	se			-			m
	Soil D	escriptio	on	Orang	gish brown	mottled blu	uish gr	ey silty	claye	ey SAN	D		Sample Type						D		
													Samples received				05/08/2019				
	Test	Method	1	BS1377:Part 2: 1	990, clause 9.0						Project started				08/08/2019						
														Date	tested			21/08	3/2019	9	
	_	CLAY	Fine	SILT	Coorso	Eino	S	AND		`ooroo	Fin	_	GRA\	/EL	Coorno	COBBLE	ES	В	DULDE	RS	
	100		FINE		Coarse			ealum		Joarse					Coarse						i T
	90																				
	00						/														
	00						/														
%	70																				-
sing	60																_				-
Pas	50 ·																				_
itage	40																				
ercer	40																				
ď	30																				-
	20																_				-
	10																				
	0.0	001		0.01		0.1		Part	icle \$	1 Size i	mm	_	10			100				1	- 000
			Sie	ving	1	Sedime	entatio	n		7											
	Par	rticle Siz	e mm	% Passing	Particle	e Size mm	%	Passir	ng												
		125		100							Sample	e Pro	portio	ns				% dr	y mas	s	
		90 75		100	-					-	Very co Gravel	barse						0	0.0		
		63		100							Sand							7	1.0		
		50 37.5		100	_						Fines	0.06	3mm					2	8.6		
		28		100						-		0.00	JIIII					2	5.0		
		20		100							Gradin	g An	alysis								
		14		100							D100				mm			0.	136		
		6.3		100]	D30				mm			0.0	653		
		5 3.35		100	-					-	Uniform	nity C	coefficie	ent	mm						
		2		100							Curvatu	ure C	oefficie	nt							
		1.18		99 99	-					-	Remark	ś									
		0.425	5	98							Preparatio	on and	testing in	accord	lance with BS13	77 unless	noted	below			
		0.3	,	96 85	-																
		0.15		64																	
	L	0.063	}	29												~	ocl	d =:: '	A	A	3
5	Q					K4 Soil	s Lat	orato	ory							Ch	ecke	u ano	, whbi	ove	
-(≯	≮)			Unit	8, Olds	Close, V	Vatfo	rd, He	erts	, WD ⁻	18 9RU				Initia	Initials: J.P)	
	AS				Em	Tel: 01	∍s։@k 923 7	450II 71128	s.co 8	211)					Date	Date: 22/08/2019			Э		
25	19	Appr	oved S	ignatories: K.Pha	ure (Tech.l	Mgr) J.Pha	ure (La	ib.Mgr)									Ν	ISF-5	-R3		

	K	1			P/	ARTIC	LE SIZ	E DIS	STRI	BUT	ION			J	ob Ref				20	6971	0.11		Ī
		SOILS					_				_			E	Borehol	e/Pit No.			V	VS3			
Si	te Na	me		The Harling	gton, Fle	eet			-					S	Sample	No.				-			
Pro	oject N	lo.		P1	19-114		Clier	nt		Impa	ct Geol	technica	al	C	epth T	ор			3.00)		m	1
														De	epth Ba	ise			-			m	i.
	Soil D	escriptio	on			Yell	owish bro	wn clay	/ey SAI	ND				S	Sample	Туре		D					
															Sample	es received			05/0	8/201	9		
	Test	Methor	1	BS1377 P	art 2 [.] 19	90 claus	e 9.0							s	Schedules received Project started			08/08/2019 08/08/2019				_	
	1000	mouried		Belorrit	urt 2. 10								Date tested			21/08/2019				_			
	_	CLAY	Fine	SIL Medi	.T	Coarse	Fine		SAND		Coarse	F	ine	GR	AVEL	Coarse	- cc	BBLES	B	OULDE	RS		
	100 -																	T					
	90 -								Ĺ													-	
	80 -																						
	70																						
%	70 -																						
ssing	60 -																						
e Pa	50 -																					+	
entag	40 -																						
Perce	30 -																						
	20 -																					†	
	10 -																					+	
	0 -																						
	0.0	101		0.0	I		0.1		Pa	rticle	ı Size	mm		I.	J		I	00			ļ	000	
			Sie	ving			Sedin	nentati	on														
	Par	ticle Siz	e mm	% Pas	sing	Particle	e Size mr	1 9	% Pass	ing													
		125		100	0							Samp	ole Pr	oport	ions				% d	ry ma	SS		
		90 75		100	0						_	Very	coars	e			_			0.0			4
		63		100	0							Sand							8	8.6			
		50		100	0									~ ~									
		37.5		100	0			-			_	Fines	<0.0	63mm						1.4			
		20		100	0							Grad	ing A	nalysi	s								
		14		100	0			_			_	D100				mr	1		0	202			_
		6.3		100	0			-			_	D30				mr	' 1		0	.202			-
		5		100	0							D10				mr	۱						
		3.35		100	0			-			_	Unifo	mity	Coeffic Coeffic	cient								_
	-	1.18		100	0							04.70											
		0.6		100	0							Rema	irks	d tooting		dance with PS	277	inloss note	d bolou	,			
		0.425)	95	5						_	Перага	auon an	ia testinį	g in accoi	dance with DO	1 <i>511</i> u	iness note					
		0.212)	65	5																		
		0.15	3	29 11)	┨																	
ر پيدس						u	K4 0		heri									Check	ed an	d App	rove	d	
	¥				l Init (K4 50	IIS La	porat	ory		10 00					lele:					Б	
- (≯	≮)				onit	5, Olas En	Email: james@k4soils.com						Ini	J.F									
U K TEST							Tel: 01923 711288					Da	Date: 22/08/2019										
25	19	Appr	oved S	ignatories:	K.Phau	re (Tech.	Mgr) J.Ph	aure (L	.ab.Mgr	r)									MSF-	5-R3			

Shaun Gilbrook Impact Geotechnical Ltd 26 Anmore Road Denmead Hants PO7 6NP

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 19-11367

Site Reference:	The Harlington, Fleet
Project / Job Ref:	P19.114
Order No:	None Supplied
Sample Receipt Date:	08/08/2019
Sample Scheduled Date:	08/08/2019
Report Issue Number:	1
Reporting Date:	14/08/2019

Authorised by:

Dave Ashworth Technical Manager

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Soil Analysis Certificate						
DETS Report No: 19-11367	Date Sampled	None Supplied				
Impact Geotechnical Ltd	Time Sampled	None Supplied				
Site Reference: The Harlington, Fleet	TP / BH No	WS1	WS1	WS2	WS3	WS3
Project / Job Ref: P19.114	Additional Refs	None Supplied				
Order No: None Supplied	Depth (m)	1.00 - 1.45	3.00 - 3.45	2.00 - 2.45	1.20 - 1.65	2.00 - 2.45
Reporting Date: 14/08/2019	DETS Sample No	426588	426589	426591	426592	426593

Determinand	Unit	RL	Accreditation					
рН	pH Units	N/a	MCERTS	5.2	6.4	7.2	7.0	5.5
W/S Sulphate as SO_4 (2:1)	mg/l	< 10	MCERTS	73	27	27	14	14
W/S Sulphate as SO_4 (2:1)	g/l	< 0.01	MCERTS	0.07	0.03	0.03	0.01	0.01

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30^oC Subcontracted analysis (S)

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Soil Analysis Certificate - Sample Descriptions
DETS Report No: 19-11367
Impact Geotechnical Ltd
Site Reference: The Harlington, Fleet
Project / Job Ref: P19.114
Order No: None Supplied
Reporting Date: 14/08/2019

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
^ 426588	WS1	None Supplied	1.00 - 1.45	7.1	Brown sandy clay with stones
^ 426589	WS1	None Supplied	3.00 - 3.45	8.1	Brown sandy clay
^ 426591	WS2	None Supplied	2.00 - 2.45	12.3	Brown loamy sand
^ 426592	WS3	None Supplied	1.20 - 1.65	11.8	Brown sandy clay
^ 426593	WS3	None Supplied	2.00 - 2.45	11.4	Brown sandy clay

Moisture content is part of procedure E003 & is not an accredited test

Insufficient Sample ^{I/S}

Unsuitable Sample ^{U/S}

^ no sampling date provided; unable to confirm if samples are within acceptable holding times

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

oil Analysis Certificate - Methodology & Miscellaneous Information	
ETS Report No: 19-11367	
npact Geotechnical Ltd	
te Reference: The Harlington, Fleet	
roject / Job Ref: P19.114	
rder No: None Supplied	
eporting Date: 14/08/2019	

Matrix	Analysed	Determinand	Brief Method Description	Method
Soil		Poron Water Soluble	Determination of water coluble baren in coil by 2:1 bet water extract followed by ICD OES	E010
Soll			Determination of PTEX by beadenase CC MS	E012
Soil	AR		Determination of cations in soil by agua regia digestion followed by ICP OES	E001 E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E002
Soil			Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	E007
	AR		1,5 diphenylcarbazide followed by colorimetry	EUTO
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soll	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soll		Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil		Diosol Papeo Organics (C10 C24)	Determination of hoveno/acotono ovtractable bydrocarbons by CC ELD	EUTT EOO4
	AN	Dieser Kange Organics (CTO - CZ4)	Determination of electrical conductivity by addition of saturated calcium sulphate followed by	L004
Soil	AR	Electrical Conductivity	electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 – C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soll	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	C12-C16, C16-C21, C21-C40)	headspace GC-MS	E004
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil		EOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by	F010
			titration with iron (II) sulphate	
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR	pH	Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D	Sulphate (as SO4) - Total	Determination of total sulphate by extraction with 10% HCI followed by ICP-OES	E013
Soll	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of sulphate by extraction with water & analysed by ion chromatography	E009
50II		Sulphate (as SO4) - Water Soluble (2:1)	Determination of water soluble sulphate by extraction with water followed by ICP-UES	EU14 EO10
5011 Soll		Sulphur Total	Determination of sulphice by distillation followed by COOffficity Determination of total sulphur by extraction with aqua-regia followed by LCP OES	EUIO FA24
501	. –		Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-	
Soil	AR	SVOC	MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (11) subpate	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10 C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12- C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soll		VUUS VIDU (CK CO 0 CO C10)	Determination of hydrocarbons $C6$ $C8$ by boadspace CC MS 8 $C9$ $C10$ by $C0$ ELD.	
2011	AK	VPH (LO-LÖ & LÖ-LIU)	Determination of hydrocardons co-co by headspace GC-NIS & Co-CTU by GC-FTD	EUUI

D Dried AR As Received

APPENDIX F:

OUTLINE DRAWINGS FOR IMPROVEMENT WORKS:

- ESSENTIAL AND NECESSARY
- DESIRABLE

50mm

 scenium arch in stage wal light suppo	 I prt syst					
-vent						
	nber roc	of to 199	3 extensio	<u>חו</u>		
		88540.00				
		84230.0	00 8351 <u>0.008</u>	3410.00		
aining wall			v	_		
steel supports						
			· · .		·	
own Council			r & Witl 3 engineers	hycom	lbe	1
n,Fleet Road,Fleet, mpshire		Norwich House 14-15 North Str Guildford Surrey, GU1 44	eet F	el 01483 4573 ax 01483 5681	73 16	
TION A-A ential & Necessary	ARCHITECT PROJECT No		DRAWING No.	REV	DWG. STATUS	
ment Works	19-1	962	49	Α	TENDER CONSTRUCTION RECORD	
7	I			8	J	I

						1
· · ·	<u> </u>	<u> </u>	· -	·	·	
rough						
concrete						
83960.00	84020.00					
0	1 2 Scale 1:150	3	4 5			
· · ·	<u> </u>	<u> </u>	· -	· _	·	
own Council		Coope	r & Wi	thycom	be	
		CONSULTIN	G ENGINEERS	tel 01483 4573	173	
n,Fleet Road,Fleet,		14-15 North Sti Guildford Surrey, GU1 4	eet AF	Fax 01483 5681	16	
mpshire	400000000000000000000000000000000000000					
TION (North-West)	ARCHITECT				DWG. STATUS	
or Extension		000		REV	TENDER	
	19-1	902	07	A	RECORD	
7				8		-

85949.8	7
L	
Town Council	Cooper & Withycombe CONSULTING ENGINEERS
ton,Fleet Road,Fleet, lampshire	Norwich House tel 01483 457373 14-15 North Street Fax 01483 568116 Guidford Surrey, GU1 4AF
CTION B-B n for Extension	ARCHITECT DWG. STATUS PROJECT № DRAWING №. 19-1962 70
7	8

